100+ MCQs Of Geometrical Concept of Geodesy With Answers
1. Which global datum is most commonly used today for GPS and has largely replaced older datums? A) ETRS89 B) WGS 84 C) NAD83 D) GRS80 View Answer B) WGS 84 2. How did ancient Greek astronomers contribute to geodetic datums? A) By defining the position of the Equator. B) By developing concepts of latitude and longitude. C) By establishing the Greenwich Prime Meridian. D) By measuring the Earth’s curvature along coastal lines. View Answer B) By developing concepts of latitude and longitude. 3. What significant survey helped in the development of a geodetic datum in India, and what was its goal? A) The United States Triangulation aimed to measure ocean depths. B) The Great Trigonometrical Survey aimed to establish a geodetic datum. C) The Struve Arc Survey aimed to confirm an aphelion distance. D) The Greenwich Meridian Survey aimed to map the skies. View Answer B) The Great Trigonometrical Survey aimed to establish a geodetic datum. 4. What key aspect makes WGS 84 different and more useful than earlier datums? A) It is designed for global use, unlike most earlier datums. B) It only covers the British Isles region. C) It relies solely on local monument control points. D) It uses ancient astronomical positioning methods. View Answer A) It is designed for global use, unlike most earlier datums. 5. What technological advancement addressed the inaccuracies of astronomical and chronological methods for position measurements prior to GPS? A) Increased cloud coverage observations improved results. B) Repeating time measurements solved inaccuracy. C) The Marine chronometer innovation improved precision. D) Rare stone alignment provided higher accuracy. View Answer C) The Marine chronometer innovation improved precision. 6. What is a major advantage of WGS 84 over earlier local datums? A) WGS 84 is designed exclusively for mapping Mars. B) WGS 84 was the first to use satellite data in calculations. C) WGS 84 is intended for global use unlike most earlier datums. D) WGS 84 can measure local sea levels precisely. View Answer C) WGS 84 is intended for global use unlike most earlier datums. 7. How does a datum transformation affect the coordinates of a single location? A) The coordinates can vary widely between different datums. B) Coordinates may shift only by a few inches. C) Coordinates remain unchanged between different datums. D) Coordinates are standardized across all datums. View Answer A) The coordinates can vary widely between different datums. 8. What early scientific idea was eventually corrected through advancements in geodesy? A) The theory that Earth was flat and not spherical. B) The belief that Earth was prolate, as suggested by early surveys. C) The hypothesis that longitude measurements were unnecessary. D) The assumption Earth had perfectly symmetrical gravity throughout. View Answer B) The belief that Earth was prolate, as suggested by early surveys. 9. Why is the WGS 84 system particularly suited for GPS applications? A) It has the smallest number of control points globally. B) It provides the most localized data for small regions. C) It is bound to the Earth’s center of mass, aiding satellite tracking. D) It can only be used in military operations. View Answer C) It is bound to the Earth’s center of mass, aiding satellite tracking. Related Items: Basic Geodesy MCQ Questions And Answers 10. What effect does the use of early satellites have on datums established in the late 20th century? A) They restricted datums to regional usage only. B) They allowed for the creation of more accurate global datums. C) They led to a decline in the need for terrestrial surveys. D) They made older datums completely obsolete. View Answer B) They allowed for the creation of more accurate global datums. 11. What is the primary reason WGS 84 has largely supplanted other datums since the advent of GPS? A) It is intended for global use unlike most earlier datums. B) It allows for easier local datum transformations. C) It has a more straightforward vertical datum alignment. D) Its model of the Earth is perfect and unchanging. View Answer A) It is intended for global use unlike most earlier datums. 12. Why do geodetic datums like NAD27 and NAD83 differ significantly in location references? A) Different ellipsoids and geodetic control points are used in each datum. B) NAD27 coordinates are based on astronomical observations rather than GPS. C) NAD27 uses sea level as the origin while NAD83 uses the Earth’s center. D) NAD27 is based on a spherical model, whereas NAD83 is flat. View Answer A) Different ellipsoids and geodetic control points are used in each datum. 13. What factor primarily contributed to inaccuracies in pre-GPS positional measurements? A) Failure to account for Earth’s polar flattening. B) Lack of precision in astronomical and chronological methods over long distances. C) Use of triangulation limited to one continent. D) Dependence on tidal variations for sea level reference. View Answer B) Lack of precision in astronomical and chronological methods over long distances. 14. What complicates the process of datum conversion between systems like NAD27 and NAD83? A) Rotational Earth’s speed variance between surveys. B) Irregular survey networks and uneven distribution of early survey errors. C) Use of different language models for conversion. D) Differences in Earth’s gravitational field intensity. View Answer B) Irregular survey networks and uneven distribution of early survey errors. Related Items: Compass Surveying High Level MCQ Questions and Answers 15. Which development helped validate Isaac Newton’s hypothesis about Earth’s shape? A) The Anglo-French Survey connecting UK and France. B) John Harrison’s invention of the marine chronometer. C) The French geodesic missions to Lapland and Peru. D) The Great Trigonometrical Survey of India. View Answer C) The French geodesic missions to Lapland and Peru. 16. What is typically used as the model for calculating coordinates on an ellipsoidal surface? A) Galileo model B) Newtonian model C) Pythagorean model D) WGS84 model View Answer D) WGS84 model 17. Which formula is recommended for precise large-distance calculations on an ellipsoidal surface? A) Haversine formula B) Pythagorean theorem C) Simpson’s rule D) Vincenty’s formula View … Read more